Pituitary Adenomas: Evaluation and Management

Fawn M. Wolf, MD

10/27/17
<table>
<thead>
<tr>
<th>Series</th>
<th>No. pituitaries examined</th>
<th>No. adenomas found</th>
<th>Frequency (%)</th>
<th>No. macroadenomas found</th>
<th>Stain PRL-positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susman [12]</td>
<td>260</td>
<td>23</td>
<td>8.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Costello [14]</td>
<td>1000</td>
<td>225</td>
<td>22.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Sommers [15]</td>
<td>400</td>
<td>26</td>
<td>6.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>McCormick and Halmi [16]</td>
<td>1600</td>
<td>140</td>
<td>8.8</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Haugen [17]</td>
<td>170</td>
<td>33</td>
<td>19.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kovacs et al [18]</td>
<td>152</td>
<td>20</td>
<td>13.2</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>Landolt [19]</td>
<td>100</td>
<td>13</td>
<td>13.0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Mosca et al [20]</td>
<td>100</td>
<td>24</td>
<td>24.0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Burrows et al [21]</td>
<td>120</td>
<td>32</td>
<td>26.7</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>Parent [22]</td>
<td>500</td>
<td>42</td>
<td>8.4</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Muhr et al [23]</td>
<td>205</td>
<td>3</td>
<td>1.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Max [24]</td>
<td>500</td>
<td>9</td>
<td>1.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Schwezinger and Warzok [25]</td>
<td>5100</td>
<td>485</td>
<td>9.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Chambers et al [3]</td>
<td>100</td>
<td>14</td>
<td>14.0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Coulon et al [26]</td>
<td>100</td>
<td>10</td>
<td>10.0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Siqueira and Guembarovski [27]</td>
<td>450</td>
<td>39</td>
<td>8.7</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Char and Persaud [28]</td>
<td>350</td>
<td>35</td>
<td>10.0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Gorczyca and Hardy [29]</td>
<td>100</td>
<td>27</td>
<td>27.0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>El-Hamid et al [30]</td>
<td>486</td>
<td>97</td>
<td>20.0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>Scheithauer et al [31]</td>
<td>251</td>
<td>41</td>
<td>16.3</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>Kontogeorgos et al [32]</td>
<td>470</td>
<td>49</td>
<td>10.4</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Marin et al [33]</td>
<td>210</td>
<td>35</td>
<td>16.7</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Sano et al [34]</td>
<td>166</td>
<td>15</td>
<td>9.0</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Teramoto et al [35]</td>
<td>1000</td>
<td>51</td>
<td>5.1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Camaris et al [36]</td>
<td>423</td>
<td>14</td>
<td>3.2</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>Tomita and Gates [37]</td>
<td>100</td>
<td>24</td>
<td>24.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kurosaki [38]</td>
<td>692</td>
<td>79</td>
<td>11.4</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Buurman and Saeager [39]</td>
<td>3048</td>
<td>334</td>
<td>11.0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>Ritterodt and Hori [40]</td>
<td>228</td>
<td>7</td>
<td>3.0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>18,631</td>
<td>1,969</td>
<td>10.6%</td>
<td>7</td>
<td>—</td>
</tr>
</tbody>
</table>

Each series is identified by the authors and by the reference number.

PRL-positive indicates the percentage of tumors that had positive immunostaining for PRL, indicating that they were prolactinomas.
Over 18,000 pituitaries examined at autopsy:
- 10.6% contained adenomas (1.5-27%)
- Frequency similar for men and women and across all age groups
- Vast majority were microadenomas
- Approximately half stained for prolactin (22-66%)

<table>
<thead>
<tr>
<th>Series</th>
<th>No. pituitaries examined</th>
<th>No. adenomas found</th>
<th>Frequency (%)</th>
<th>No. macroadenomas found</th>
<th>Stain PRL-positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susman [12]</td>
<td>260</td>
<td>23</td>
<td>8.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Costello [14]</td>
<td>1000</td>
<td>225</td>
<td>22.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Sommers [15]</td>
<td>400</td>
<td>26</td>
<td>6.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>McCormick and Halmi [16]</td>
<td>1600</td>
<td>140</td>
<td>8.8</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Haugen [17]</td>
<td>170</td>
<td>33</td>
<td>19.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kovacs et al [18]</td>
<td>152</td>
<td>20</td>
<td>13.2</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>Landolt [19]</td>
<td>100</td>
<td>13</td>
<td>13.0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>McGuire et al [20]</td>
<td>100</td>
<td>21</td>
<td>21.0</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

Each series is identified by the authors and by the reference number.

PRL-positive indicates the percentage of tumors that had positive immunostaining for PRL, indicating that they were prolactinomas.
Endocrine Evaluation: Functional Adenomas

- Prolactin. 10-40% of adenomas are prolactinomas
 - YES

- Acromegaly (growth hormone): IGF-1. 2-10% of adenomas are GH secreting.
- Cushing’s disease (ACTH): cortisol. 1-15% of adenomas are ACTH secreting.
 - Maybe

- FSH/LH
- TSH
 - No
Endocrine Evaluation: Hypopituitarism

• Macroadenomas and larger microadenomas (6-9mm):
 – Common, screening recommended

• Smaller microadenomas (<6mm):
 – Hypopituitarism rarely occurs
 – Screen only if clinically indicated
Evaluation for Hypopituitarism

- FSH/LH: common, occurs in 30-70% of patients
 - Pre-menopausal women: menstrual history
 - Post-menopausal women:
 - No HRT: draw FSH, should be elevated
 - HRT: labs unhelpful
 - Men
 - FSH, LH, total +/- free testosterone
Evaluation for Hypopituitarism

- **ACTH: 20-40%**
 - Central adrenal insufficiency
 - 8am cortisol or cosyntropin stimulation test
- **GH: 10-50%**
 - IGF-1: neither sensitive nor specific. Falsely low: obesity, insulin resistance.
 - Stimulation test: insulin, glucagon
- **TSH 20-40%**
 - Overtly low free T4 (or significant drop from known baseline), with inappropriately normal or low TSH
- **PRL:**
 - Inability to lactate; overtly low PRL typically only seen following apoplexy
Hyperprolactinemia

• Clinically apparent prolactinomas: 5-50/100,000

• Hypogonadism
 – Prolactin inhibits gonadotropin release
 – Full spectrum of severity
 – Bone loss (trabecular)

• Galactorrhea
Diagnosis of Prolactinomas

- Serum draw, any time of day
- Avoid chest wall stimulation, sexual intercourse, intense exercise for 24 hours prior
- >250mcg/L: likely a prolactinoma
 - Risperidone, metoclopramide can occasionally cause PRL in the 200s
- < 250mcg/L: prolactinoma versus non-tumor cause
 - Numerous meds
 - Stalk effect: macroadenomas leading to stalk inhibition as the cause of hyperprolactinemia typically lead to PRLs < 95 mcg/L
When to Consider Cushing’s Syndrome

• Rapid weight gain with proximal weakness
• Patients with unusual features for age (HTN, osteoporosis)
• Patients with multiple and progressive features
• Adrenal adenomas
Diagnosis of Cushing’s Syndrome

- 24h urine free cortisol (UFC)- 2 samples
- Late night salivary cortisols- 2 samples
- 1mg overnight dexamethasone suppression test (ONDST)

- Do not use:
 - 8 am cortisol
 - Imaging prior to biochemical diagnosis
Acromegaly: Clinical Features

• Soft tissue: hands, feet (ring/shoe size), tongue (macroglossia), nerve impingements (carpal tunnel), pharynx/larynx (sleep apnea in 50-70%)

• Bone: coarse facial features, enlarged jaw (macronathia), teeth spread apart, dental malocclusions, increase in BMD

• Skin: skin thickens (difficult venipuncture), skin tags, excessive sweating, hirsutism

• Joints: hypertrophic arthropathy

• Viscera: thyroid (goiter +/- nodules)
When to Suspect Acromegaly

• Combination of DM2, sleep apnea, arthritis/tendonitis, especially if BMI is normal or in the absence of a FH of DM2
• New dental malocclusions
• Heat intolerance, sweating
• Hand/foot swelling
Acromegaly: Diagnosis

• Biochemical diagnosis, not a clinical diagnosis
• Screening IGF-1
 – Nearly always elevated in patients with acromegaly
 – Few physiologic causes of high IGF-1: puberty and pregnancy
• Confirmation: 75g oral glucose tolerance. At 2 hours, GH < 1 ng/ml rules out acromegaly.
Additional Work-up

• Formal visual field (VF) testing for all patients with an incidentaloma abutting the optic nerves or chiasm, even if there are no apparent visual symptoms

• Pituitary dedicated MRI (fine cuts though the sella w/w/o gadolinium), if initial study was a CT or brain MRI
Indications for Surgery

• Visual field deficit, ophthalmoplegia or neurological compromise due to the lesion
• Lesion abutting/compressing optic nerves or chiasm
• Apoplexy with visual disturbance
• Functional tumors, other than prolactinomas

• Consideration of surgery: significant growth over time, hypopituitarism (with resolution in 15-50% of patients), lesions close to the optic chiasm with plans for pregnancy
Evaluation of pituitary function

Hyperfunctioning
- Prolactinoma
 - Dopamine agonist
- Other
 - Surgery

Clinically nonfunctioning
- <1cm
 - Repeat MRI at 1, 2, 5 yrs
 - No change
 - No further studies (?)
 - >1cm
 - Visual fields R/O pituitary hypofunction
 - Repeat MRI at 0.5, 1, 2, 5 yrs
 - Abnormal fields
 - Surgery
 - Tumor growth
 - Surgery